Advanced 3D-Printed Child's Prosthetic Hand

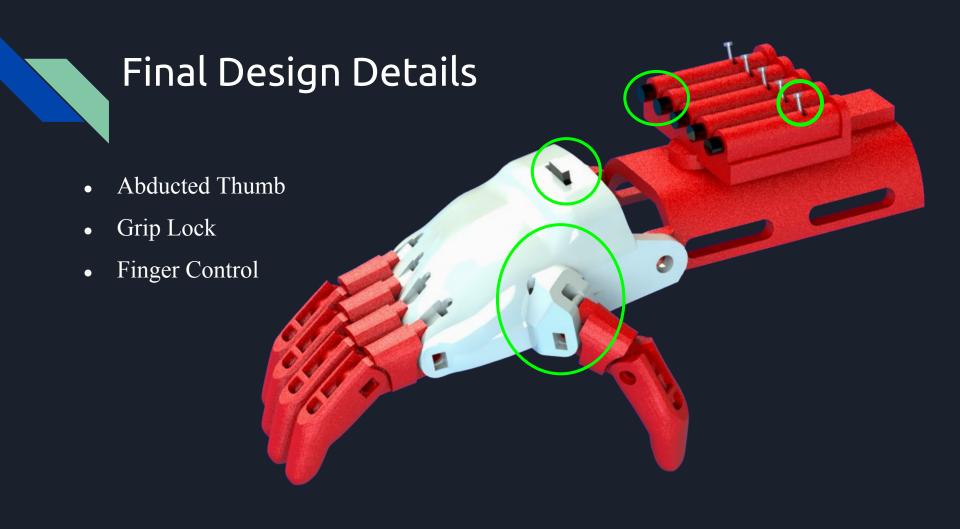
ASPIRES Summer Internship 2017

Dr. Teh, Daniel Kim, Andres Lee, Yardley Ordonez, Ryan Carroll, Edgar Sanchez, Juan Lopez, and Brian Carrozza

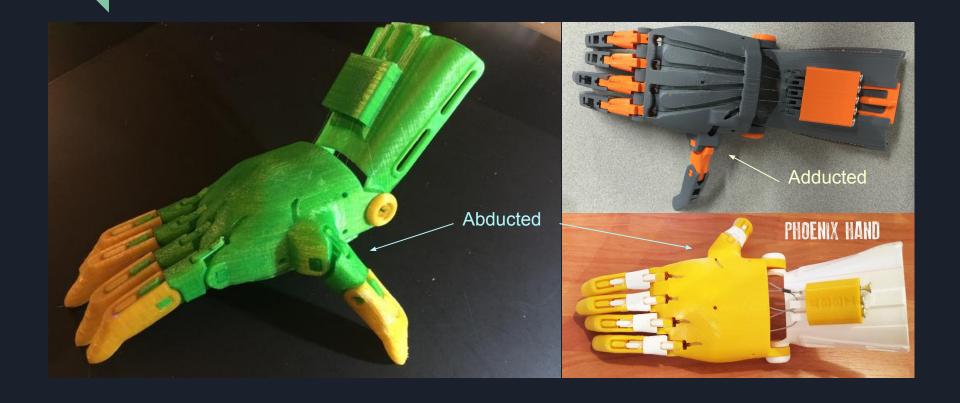
Overview

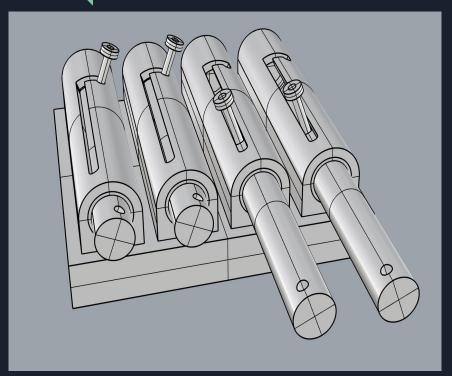
- 1. Motivation
- 2. Background
- 3. Problem Statement
- 4. Solution
- 5. Design Details
- 6. Testing
- 7. Results and Analysis
- 8. Bill of Materials (BOM)
- 9. Summary
- 10. Sources

Background & Motivation


- Most pediatric amputations occur in ages of 0-5 yrs
- 4 out of 10,000 births suffer from upper limb deficiency
- Commercially available prosthetics cost upwards of \$4,000
- Child growth requires new prosthetics
- Limited motion through single wrist actuation

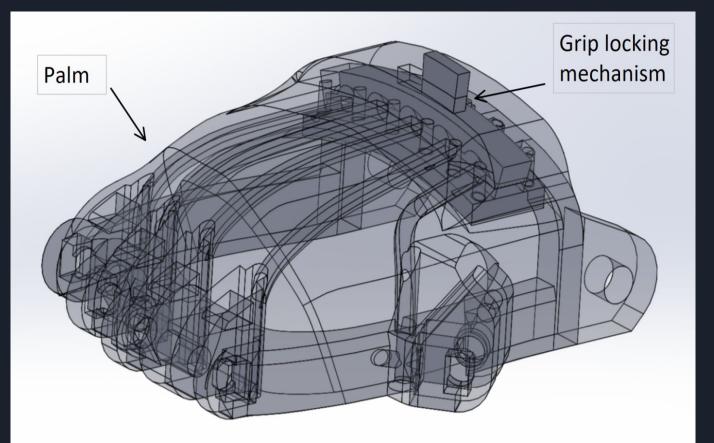
Solutions

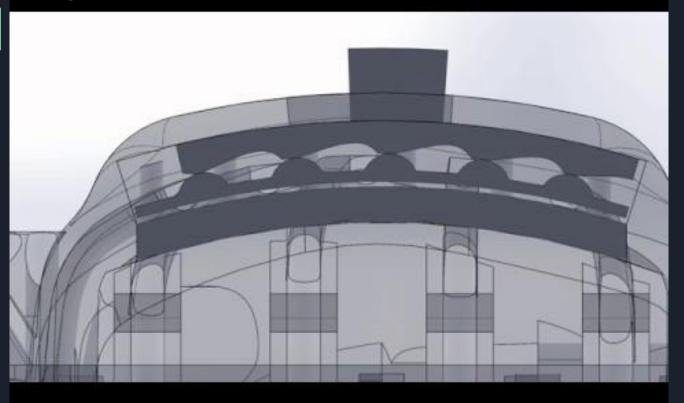

- Low cost PLA
- Mechanisms: IMF & GL
- Abducted Thumb
- Silicon fingertips
- Open Source



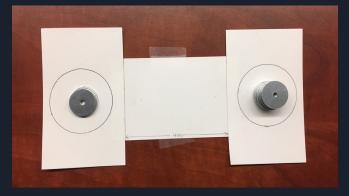
Abducted vs. Adducted Thumb

Individual Finger Control (IFC)

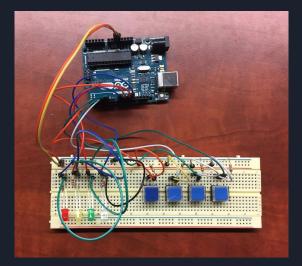



Individual Finger Control (IFC)

Grip Lock


Grip Lock

Grip Lock



Testing

- Grip precision Test
 - o Test: Pick up/move a stack of washers
- Button Selection Precision Test
 - Test: Press buttons in predetermined pattern
- Grip force Test
 - Test: Weight added to rod

Results and Analysis

- Stacking Washers Test:
 - Modified prosthetic: 9.4 of 15 washers stacked
 - Standard prosthetic: 9.2 of 15 washers stacked
 - Overall advantage: Negligible
 - Observations: Using two fingers reduced likelihood of stacks being knocked over.
- Patterned Button Pressing Test:
 - Modified prosthetic: 97.6% accurate
 - o Standard Prosthetic: 30.7% accurate
 - Overall advantage: Significant [66.9% improvement]
 - Observations: Unused, engaged fingers of standard prosthetic caused numerous unintended button presses.
- Weighted Rod Test:
 - Modified prosthetic: 1538.8g (avg. weight held when slippage began)
 - Standard Prosthetic: 568g (avg. weight held when slippage began)
 - Overall advantage: Significant [2.7x]
 - Observations: gel fingertips caused rod to slip slowly, while bare PLA fingers released quickly.

Bill of Materials

Item	Quantity	Price
PLA	1 roll (~111m)	\$20.00
Braided fishing wire	1 roll (137m)	\$10.72
Nylon String	1 roll (~91m)	\$7.79
Springs	12-pk	\$ 5.43
Sheet metal screws #6 x 3/8	16-pk	\$ 1.18

Total Cost: \$50.12

Estimated Cost to Produce our Prosthetic Hand - Breakdown of Materials Used

Material Used	Quantity Used	Unit Cost	Total Price of Material Used	
PLA	~17.2m	\$0.075/m	\$3.87	
Braided fishing wire	~3.66m	\$0.078/m	\$0.29	
Nylon String	~1.83m	\$0.086/m	\$0.16	
Sheet metal screws	5 screws	\$0.074/screw	\$0.37	
springs	5 springs	\$0.452/spring	\$2.26	

Estimated Total Cost to Produce our Prosthetic Hand: \$6.95

Future Work

- Switchless individual control
- Streamline grip lock interface
- Silicon to replicate skin
- Implement more aesthetic design
- Improve Comfort

Summary

- Kids with Partial Hands
- Choice between Limited
 Functionality or High Costs
- Design mechanisms for higher functioning body powered prosthetics
- Develop tests to determine effectiveness of modifications

Sources

- 1. C. (Ed.). (2016, November 14). Birth Defects. Retrieved July 26, 2017, from https://www.cdc.gov/ncbddd/birthdefects/ul-limbreductiondefects.html
- 3. Carey, S. L., Lura, D. J., & Highsmith, M. J. (2015). Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. *Journal of Rehabilitation Research and Development*, *52*(3), 247-262. doi:10.1682/jrrd.2014.08.0192
- 4. Resnik, L., Meucci, M. R., Lieberman-Klinger, S., Fantini, C., Kelty, D. L., Disla, R., & Sasson, N. (2012). Advanced Upper Limb Prosthetic Devices: Implications for Upper Limb Prosthetic Rehabilitation. *Archives of Physical Medicine and Rehabilitation*, *93*(4), 710-717. doi:10.1016/j.apmr.2011.11.010

Questions?