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Abstract 

 

Electromyography (EMG) signals are a measurement of electrical activity in muscles. These 

signals contain important neural information representing movement intentions. EMG pattern 

recognition has been studied and used for myoelectric controlled applications such as neural-

controlled prostheses, assistive robots, and virtual input devices. EMG signals are usually 

processed and analyzed using feature extraction and pattern recognition methods to interpret 

human movement. However, to apply myoelectric controlled systems in practice, some 

challenges still remain. The system needs to be portable, real-time, and robust. Moreover, a large 

amount of data needs to be obtained and stored in order to improve the system. The goal of our 

research was to develop an Android mobile application that is able to process incoming EMG 

data and output a gesture classification. Additionally, a cloud computing framework, using 

Amazon Web Services, was created in order to store and process that information. The 

application was written in Java and receives data through Bluetooth low-energy (BLE) 

communication from a Myo Armband (Thalmic Labs). This device is low cost and easy to use, 

which aligns with our project’s purpose. The armband streams raw EMG data at 200 Hz from 8 

different EMG sensors and 9-axis inertial measurement unit (IMU) data at 50 Hz. The incoming 

data is subjected to classification algorithms and from this we are able to output a gesture 

decision. This decision is then given to a client application; such as, a prosthetic limb or video 

game. Experiments were done on human subjects to evaluate the accuracy, response time, and 

usability of the developed system. 

 

I. Introduction 

 

Gesture recognition provides a convenient and natural way for humans to interact with 

computers [1]. These interactions include: sign language recognition and gesture-based controls. 

Gesture recognition technology can be classified into three different methods: data-gloved 

recognition, computer-vision techniques, and electromyography signals (EMG). Data-gloves use 

bending sensors and accelerometers. The main disadvantage of this method is that it isn’t natural 

and convenient because the user needs to wear a cumbersome data glove in order to obtain the 

necessary data input for the system. In contrast, computer-vision doesn’t require the user’s 

interference. However, this method is heavily dependent of the camera that is being used. The 

device is susceptible to the light settings in the environment and that limits how well this 

technique recognizes gestures. Moreover, it needs a complicated setup that uses several cameras. 

 



An alternative to the two previous methods is the use EMG signals. EMG signals is the electrical 

activity of our muscles known. This method can be used to control prosthetic arms. There are 

important considerations that must be taken into account in order for the user to achieve high 

acceptability, when using a prosthetic arm with this control scheme [2]. First, the system needs to 

be accurate meaning that the gesture performed needs to be correctly done or represented by the 

system. Second, the controls need to be intuitive to the user so that he or she can easily and 

seamlessly learn how to use the controls. Finally, the system should not introduce a considerable 

amount of delay in order to be considered as real-time gesture classification. An acceptable 

threshold for the delay is 300ms.  

 

Taking all the above into consideration, the goal of our research was to develop an android 

application that is able to obtain EMG data, process it, output a gesture classification, and store 

the processed data in a cloud storage service. The Myo Armband, developed by Thalmic labs, is 

the device used to stream raw EMG data from muscles to an android device.  

 

 
Figure 1. Myo Armband developed by Thalmic Labs. 

 

The Myo Armband, shown in Figure 1, was chosen because it is low-cost with a value of $200. 

Additionally, it is user friendly because the user can wear the armband without any previous 

preparation. It has 8 EMG sensors that stream data at 200 Hz and 9-axis inertial measurement 

unit (IMU) that streams data at 50 Hz. The IMU sensors include a three axis gyroscope, 

magnetometer, and accelerometer. 

 

A basic overview of the structure of our android application is shown in Figure 2 below. The 

application was written in java using Android studio. Additionally, the Statistical Machine 

Intelligence and Learning Engine (SMILE) library was used to implement different classification 

and model validation algorithms. Finally, our cloud application utilizes Amazon Web Services 

for cloud based storage and computing. 

 

 
Figure 2. Structure of the android application. 



A. Myo Data 

 

The application obtains raw EMG data from the Myo Armband through the use of Bluetooth low 

energy (BLE). In this state, the data is not useful due to noise from several sources such as the 

arms muscles. This data must be subjected to data processing; in order to do this, the data is 

separated into discrete windows for analysis. 

 

B. Feature Calculator 

 

Data Windowing 

 

There are two data windowing schemes: adjacent and overlapped sliding. 

 

        
                  Figure 3. Adjacent window scheme [1]                         Figure 4. Overlapped sliding window scheme [1]. 
 

For adjacent windows, the window size and the window increments have the same length as 

shown in Figure 3. In contrast, the overlapped sliding window has a smaller window increment 

compared to the window length, which can be seen in Figure 4. The advantages of using this 

method allow the application to obtain a denser data set, meaning it can perform analysis on the 

next window without having to wait for the current one to finish. Ultimately, using overlapping 

windows takes advantage of the computing power of the device [1]. 

 

Feature Extraction 

 

The application extracts the following time-domain features from the EMG data streamed from 

the Myo Armband: mean absolute value (MAV), waveform length (WAV), number of slope sign 

changes (Turns), and number of zero crossings (Zeros). Two additional features called scaled 

mean absolute value (SMAV) and adjacency uniqueness (AC) are also calculated. 

 

 

 

 

 

 



Mean absolute value is a commonly used feature that detects muscle contraction levels [3]. 
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Waveform length refers to the total length of the waveform in a segment of time [3]. 
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Slope sign changes indicates the amount of times there has been a change from positive to 

negative or negative to positive in the slope for three consecutive segments in a given threshold 

denoted by epsilon (𝜀) [3]. 

 

(𝑥𝑘 > 𝑥𝑘−1 𝑎𝑛𝑑 𝑥𝑘 > 𝑥𝑘+1) 𝑜𝑟 (𝑥𝑘 < 𝑥𝑘−1 𝑎𝑛𝑑 𝑥𝑘 < 𝑥𝑘+1) 𝑎𝑛𝑑 |𝑥𝑘 − 𝑥𝑘+1| ≥ 𝜀     (3) 

 

Zero crossings calculates the amount of times the waveform has crossed zero in a given 

threshold epsilon (𝜀) [3]. 

 

(𝑥𝑘 > 0 𝑎𝑛𝑑 < 0) 𝑜𝑟 (𝑥𝑘 < 0 𝑎𝑛𝑑 𝑥𝑘+1 > 0)𝑎𝑛𝑑 |𝑥𝑘 − 𝑥𝑘−1| ≥ 𝜀  (4) 

 

Scaled mean absolute value indicates gesture intensity: 
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Adjacency uniqueness detects how distinct adjacent Myo Armband channels are [4]: 
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C. Classifier Trainer, Classification Algorithms 

 

The features collected from the feature calculator are compiled into vectors. These vectors can be 

used in two different phases during the training of our classification algorithm or during the 

prediction of gestures. 

 

Classification Trainer 

 

Training classifiers require two things, the feature vectors and knowledge of the corresponding 

gesture, or class, that is associated with that feature vector. This data is used to build a model that 

helps separate different classes based on similarities and differences within the feature vectors. 

For instance, a resting gesture that does not activate much electrical activity in the forearm would 



produce a very low SMAV whereas a fist gesture would produce a much larger SMAV. When 

training the classifiers, the model would separate these two gestures based on SMAV.  

 

These models are then used to predict gestures, by comparing incoming feature vectors that need 

to be predicted with the model built by the classification trainer. 

 

Classification Algorithms 

 

Classification algorithms take in feature vectors, but unlike when training do not take in 

corresponding class labels, or gestures. The algorithms predict the classes by comparing the 

feature vectors to the models generated by the classification trainers. In our project, we used four 

different classification algorithms, Linear Discriminant Analysis (LDA), Logistic Regression, 

Decision Trees, and K-Nearest Neighbor (KNN). 

 

1. Linear Discriminant Analysis 

 

LDA tries to find the dimension such that when all the training data is projected onto that 

dimension, it has the maximum difference between the means of the classes, normalized by their 

variances (insert equation #). LDA reduces the dimensionality of the data in the most optimal 

way for classification. This groups similar classes together and separates different classes. The 

figure below represents how LDA works, where the purple line is the most optimal subspace and 

the red line is the least optimal [1]:

 
Figure 5. The figure shows two different subspaces which the data can be dimensionally reduced to. It consists of 

data representing two classes graphed against two different features and resembles the most and least optimal 

subspaces. [5] 
 



2. Logistic Regression 

 

Multinomial logistic regression builds upon binomial logistic regression, where the number of 

classes is limited to just two (for instance 0 or 1) and the number of features limited to one. In 

binomial logistic regression, we determine a logistic function which relates to the probability of 

either being one of the classes with a linear model. This probability can be summed up by the 

algorithm below: 

ln (
Pr (0)

1−𝑝(0)
) = 𝛽0 + 𝛽1𝑥1      (7) 

 

Where 𝛽0 and 𝛽1 are regression coefficients determined in the training phase that help fit a linear 

model to the logistic model and x1is the value of the feature, and Pr(0) is the probability that the 

incoming feature is in the class 0. This probability can be extracted through the following 

algorithm: 

 

Pr(0) =
𝑒𝛽∙𝑋

1 + 𝑒𝛽∙𝑋
     (8) 

 

Note, the linear model represented in (7) can be represented as a dot product between vectors 

where the first element in the feature vector is 1. This binary classification and can be used for 

multiple classes. Logistic regression can find K possible classes by running K-1 independent 

binomial logistic models which can be represented through the following algorithm: 

 

Pr(𝑐𝑙𝑎𝑠𝑠 𝑌𝑖) =
𝑒𝛽𝑖∙𝑋
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     (9) 

 

where Y is an integer that represents one of the classes. Multinomial logistic regression 

calculates the probability for each class from 1 to K. The highest probable class is then the final 

prediction the classifier outputs. [6] 

 

3. Decision Trees 

 

Decision trees split the data based on attributes. For instance, in the tree below, the blue circles 

are attributes while the non-filled circles represent separated classes: 

 
Figure 6. A graph representation of a decision tree. The solid blue ovals represent the attributes while the blue-

outlined ovals represent the actual splits to create the tree. [7] 



 

Decision trees uses the ID3 algorithm developed by Ross Quinlan in 1986. It splits the data 

based on the best attribute for the data. It stops splitting based on attributes once the child nodes 

are perfectly classified, as in, there are no other attributes that could split them. 

We also use the CaRT (Classification And Regression Tree) algorithm developed in 1984. It uses 

a Gini impurity which measures how often a randomly selected element is identified as the 

incorrect class if it was randomly given a class from the subset. The Gini impurity algorithm is as 

follows: 

 

𝐼𝐺(𝑝) = ∑ 𝑝𝑖𝑝𝑘

𝑖≠𝑘

 

 

where 𝐼𝐺(𝑝) is the Gini Impurity and 𝑝𝑖 and 𝑝𝑘 is the probability that an item with the class i or 

k. Minimizing the Gini impurity leads to splitting the tree in the most optimal way. 

Classification identifies the target by reaching the most accurate leaf node with the closest 

attribute. [7][8] 

 

4. K-Nearest Neighbor 

 

KNN is a type of instance-based learning where all computation is during classification. It uses 

the majority vote of its neighbors as its prediction. The object being predicted is assigned to the 

class most common amongst its k nearest neighbors, where k is a positive integer. The graph 

below resembles a 2-class, 2-feature example of KNN. 

 
Figure 7. The image above shows a model developed by graphing two classes based on 2 different features. The blue 

target shows the data that wants to be predicted. The green circle represent when k is 3. 
 

The graph above shows a blue target as the incoming feature that needs to be predicted while the 

purple circles and red squares are other classes. In an instance where k equals 3, the algorithm 

chooses the 3 closest data points from its training data. The greatest represented class in those 

data points is the prediction outputted by the KNN algorithm. [8] 

 

 



D. Cloud Computing 

 

While all data could be trained, classified and validated locally on every user’s device, certain 

processes could be migrated to a cloud server to save local CPU power, thus further signifying 

the importance of cloud computing. With a reliable cloud computing system such as Amazon 

Web Services, complex computing capabilities are made endlessly possible with a total of 1.4 

million CPU’s, GPU’s and FPGA serves on demand [9]. Within Amazon Web Services exists 

Elastic Compute Cloud, which provides the ability to use virtual computers in order to run any 

type of application. This is important so that the same computing power is distributed among 

users as it is done in the cloud instead of locally on each device. With that, we are assured that 

results from calculations will be immediately available, therefore increasing efficiency and 

accuracy.  

 

II. Design and Implementation 

 

A. MyoHMI Modules 

 

Figure 2 shows the overall architecture of the application. It can be divided into three different 

parts, which are the signal processing modules, file interaction modules, and graphical user 

interface (GUI). The signal processing modules communicate with the myo armband, processes 

the incoming data, and performs gesture classification. The file interaction modules allow us to 

save data needed to perform experiments and future improvements on the system. Finally, the 

GUI allows the user to have an intuitive interface; in which, they can access all the functions that 

the app has implemented. Additionally, he or she obtains feedback from the app regarding what 

gesture is being performed. 

 

Signal processing modules 

 

1. Data Collection Module – MyoGattCallback 

 

This module allows the application to scan for Bluetooth devices in its immediate surrounding 

using BLE. It identifies 4 different Bluetooth characteristics and detects whenever there is a 

change in any of them and updates the stream. It receives two streams of data for a total of one 

stream of 16 bytes. However, the Myo Armband can only receive 8 bytes at a time, so the EMG 

data has to be segmented into two vectors of 8 bytes each.  

 

2. Feature Calculation Module - FeatureCalculator  

 

The module receives raw EMG data; it segments the data into overlapped sliding windows of 

length 40 with window increments of 8. In each window, the features: MAV, WAV, turns, zeros, 

SMAV, and AU are extracted from each of the 8 channels of the Myo Armband. After all the 

features are obtained, they are concatenated into one data (feature) vector. One-hundred samples 

are collected for each gesture performed. The application gives flexibility to the user as they are 

able to select which features they want to use.  

 

 



 

 

3. Classification Trainer and Classification Module - Classifiers and SMILE Library 

 

The classification algorithms implemented in this module utilize the SMILE (Statistical Machine 

Intelligence and Learning Engine) library written by Haifeng Li. SMILE has several classifiers 

readily available. First, the classifiers are trained. The classification trainer takes in 100 data 

vectors for each gesture selected. Each data vector is converted into an array of doubles, since 

implementation requires data vectors to be of a double data type. For each of these data vectors, 

the classification trainer also takes in an array of integers corresponding to gestures associated to 

each data vector, called class labels. Once all the data is collected, a model is built based on 

which classifier is selected. Once the classification models have been created, the remaining data 

vectors from the feature calculator are sent to the classification module. The classifiers perform 

predictions on incoming data vectors, this time without class labels. The classifiers currently 

implemented in the application are: linear discriminant analysis, logistic regression, decision 

tree, and k-nearest neighbor. Support vector machine, neural network, and AdaBoost (based off 

decision trees) are currently being implemented and optimized.  

 

Finally, this module also performs model validation by implementing cross validation. The 

method generates a confusion matrix for the selected classifier. It takes in the same samples used 

during the training phase of the classifier and segments them into equally sized parts. It then 

takes 4 parts to train the classification model and performs predictions on the remaining group. 

This process is repeated 5 times and in each iteration the training and testing sets are changed. 

Once finished, the average of all the predictions is taken and the matrix is returned. This is used 

to show how accurate the selected classifier is. 

 

File Interaction Module 

 

This module allows the user to save the data vectors created during the training session into a 

text file. The user will then have the option to upload and store it in the cloud or store it in their 

SD card.  

 

Cloud storage is one of the most important parts of the application. By implementing cloud 

storage, we have created a way to analyze a variety of data based on a large amount of users.  

Cloud storage provides accessibility of data that could be used for further improvement of the 

application, the research itself, as well as supply research and analysis in many different 

fields.  This feature also allows for mobility and efficiency of computing capabilities. This 

feature was generated through the use of several different software applications from Amazon 

Web Services--a software that offers cloud storage, database storage, content delivery, and 

compute power. 



           
Figure 8. Upload feature in the Flask application,                       Figure 9. Log-in feature in the Flask application 

         all deployable to Amazon’s S3  
 

Elastic Compute Cloud (EC2) provided the rental of virtual machines on the cloud which enables 

complex applications to be ran without running into potential hardware and software problems. 

With EC2, access keys and secret key ID’s were provided in order to synchronize with other 

software systems and allows access for applications to be ran in the cloud. We then used Flask, a 

python based micro framework, to create an application that stores data directly to Amazon’s 

Simple Storage Service (S3) from an upload feature shown in Figure 8. We also created a login 

feature (Figure 9) for added security to the application. This application is made deployable to 

the web through Amazon’s Elastic Beanstalk, a cloud deployment and provisioning service.  

 

While it is important to be able to save data manually through the Flask application, tested data 

within the mobile application must have the same storage capabilities without having to log on to 

a website. Within the mobile app, constructed a connection to S3 through setting up credentials 

that enables connection to our virtual computer in EC2. Saving data in the cloud can now be 

accessed the click of the cloud button, which provides options to save locally or through the 

cloud (see top left of Figure 13 on page 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Graphical User Interface (GUI) 

 

The GUI implementation of the app is done by using Java and eXtensible Markup Language 

(XML). This is an appealing and user friendly GUI which contains three main tabs: EMG, 

Features, and Classification. 

 

                       
Figure 10. Bluetooth scanner screen in the MyoHMI             Figure 11. EMG tab in the MyoHMI application 
application, displays all bluetooth devices detected.               has a graph that displays raw EMG data. 
 

In Figure 10, a button on the top right side of the app gives users the option to connect or 

disconnect to the armband. The bluetooth devices detected will be displayed on a list. Once the 

user clicks on the desired device, it will take them back to the EMG tab. As shown in Figure 11, 

the EMG tab includes a text message on top that displays the status of the Myo Armband, 

connected or disconnected. It also has a circular image with clickable colored buttons 

representing each sensor on the device. The graph’s color and raw data output will change 

according to the selected sensor. The bottom right icon is used to start and/or stop streaming raw 

data. The icon on the bottom left corner will vibrate the armband. 

 



                          
Figure 12. Features tab in the MyoHMI app, 

displays selected features on the radar graph 

Feature 13. Classification tab in the MyoHMI 

app. Allows training, prediction of gestures, and 

data storage. 
 

In the Features tab, shown in Figure 12, the user can select which features to implement before 

training the gestures. In addition, there is a radar graph that indicates the values of the features 

corresponding to each channel. In the classification tab, as seen in Figure 13, the user is shown a 

list of predetermined gestures and classifiers from which they can choose any combination to be 

used. Moreover, the user has the flexibility to clear and delete gestures, as well as add a custom 

gesture to the list. After the user has trained the desired classifier according to the particular 

setting they have chosen, the live box will output the predicted gesture. Additionally, the user 

can save the training data onto the device’s local storage or upload it to the cloud storage service. 

 

B. Experimental Protocol 

 

Ten subjects participated in the experiment which consisted of eight male and two female. Each 

subject conducted three trials using the classifier K-Nearest Neighbor and the feature SMAV. 

We chose K-Nearest Neighbor because it was the most accurate classifier in our offline cross-

validation tests as seen in Table 1 below.  

 
 

 

 

 

 



Table 1. Shows the average accuracies with standard deviations and confidence intervals for the four implemented 

classifiers. Accuracies were found using seventeen training data sets through our cross-validation testing. 

 
We chose SMAV because it is the best single-feature representation of EMG data. Each subject 

trained the following eight gestures: rest, wave in, wave out, point, fist, open hand, supination, 

and pronation. In the beginning and between training each gesture, there is a three-second 

interval that prompts the user to prepare to hold the next gesture in the queue of selected 

gestures. Figure 14 demonstrates a subject holding the prompted gesture. Once all the gestures 

were trained, the subject tested the app’s ability to recognize the gestures performed as shown in 

Figure 15, and the data collected by that trial is then saved into the device’s internal storage 

which concludes one trial. After all trials have been completed, the subject filled out an online 

survey providing ratings regarding the responsiveness, accuracy, usability, and aesthetic of the 

mobile application. The survey questions allow the subject to answer the questions from a 1 to 5 

rating in which 1 is Poor, 2 is Fair, 3 is Satisfactory, 4 is Very Good, and 5 is Excellent.  

 

 

           

   Figure 14. Training Gestures.    Figure 15. Gesture Prediction. 
 



III. Results and Discussion 

 

A. Results 

 

Based on the surveys taken by the subjects, the subjects responded fairly positively as shown in 

Table 2. The ratings in the survey are from a 1 to 5 rating in which 1 is Poor, 2 is Fair, 3 is 

Satisfactory, 4 is Very Good, and 5 is Excellent. In regard to the control scheme, on average the 

responsiveness of the gesture recognition was a 4.4 out of 5 and the accuracy of the accuracy of 

the gesture recognition was a 3.6 out of 5. In regard to the usability of the app, on average the 

ease of use was rated a 4.5 out of 5 and the aesthetic of the app design was rated a 4.5 out of 5.  

 
Table 2. Average Rating of Mobile Application 

Question Topic Responsiveness Accuracy Ease of Use Aesthetic 

Average Rating 4.4 3.6 4.5 4.5 

 

B. Discussion 

Overall, the app seemed to work well for the subjects in terms of responsiveness and aesthetics. 

However, the accuracy of the gesture recognition was rated the lowest, averaging at a 3.6 out of 

5. This was surprising since our offline tests were very accurate. We suspect this rating to be 

lower than expected because when predicting gestures, the user has to use the same gesture 

intensity as when they trained it. This is especially important since the classification algorithms 

only relied on the SMAV feature. We found that fatigue played a large role in users not gesture 

intensity output. 

 
We also observed, through our tests and survey, a learning curve to the MyoHMI application. 

Some users were able to quickly produce the correct gesture based by mimicking their training 

while others found it harder.  

 
When testing the subjects, we had them select the classifier K-Nearest-Neighbor since it gave the 

best results prior to the trials being conducted. As for selecting the features, we chose to only 

conduct the trials with just SMAV since it is the best individual feature. The layout, design, and 

overall aesthetic of the application is still in its early stages of development, but it’s a solid 

foundation for future development.  

 
IV. Conclusion 

The work completed during this project has expanded the HMI from a desktop application to an 

android device application. The HMI can now be used anywhere and the user is able to save the 

EMG data from training gestures in the cloud storage if there is an established cellular signal or 

Wi-Fi connection. Additionally, with the help of the SMILE java library, we were able to 

implement and test several more classification algorithms. These additional algorithms 

dramatically increased the performance of the machine learning portion of the HMI. Our 

contributions have laid the foundation for the advancements that the application will be able to 

perform in the future such as implementation with external applications and cloud computing. 

 
  



 

 

V. Future Work 

 

Classifiers 

 

So far, we have four classification algorithms working at a very fast and efficient rate. 

Implementing more classifiers, specifically neural-networks to enhance deep learning 

capabilities, may allow for more accurate predictions. 

 

Use with External Applications 

 

Since the program currently is able to dynamically recognize gestures, the next step would be to 

connect it to an external application such as a prosthetic hand or to a virtual reality environment.  

 

Cloud Storage and Cloud Computing 

 

The future also calls for cloud computing. Cloud computing gives access to superior processing 

power compared to local android devices. We would have the devices send data to cloud servers 

to utilize the cloud computing resources to relieve local workload. The data being sent to the 

server would allow for post processing to help better user experience. For instance, cloud 

computing can create user-specific, independent, classification methods that would further boost 

prediction accuracy. 
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