ABSTRACT

Integrated Circuits, or ICs, work behind the scenes to improve the standard of life. IC performance dramatically improved since their first creation. However, with scaling of ICs to nano-scale, an ideal integrated circuit delivering reliable performance over its lifetime is nearly impossible. All ICs experience degradation over time due to the aging of underlying transistors. In this research, analysis of transistor breakdown is performed through computer simulations to understand effects on circuit power and performance. To simulate transistor breakdown effect, a 90nm ring oscillator circuit is utilized. This breakdown is modeled by resistors placed between the transistor terminals. This study aims to offer better insight into the impact of transistor breakdown and to improve IC design in nano-scale.

GOALS

I. Investigate and understand Soft Oxide Breakdown (SBD) in Integrated Circuits.
II. Gain experience in Very Large Scaled Integration (VLSI) design software.
III. Analyze delay multisampling feasibility.
IV. Relate computer simulation data to experimental results.

SOFT OXIDE BREAKDOWN

All integrated circuits will experience degradation, which can come in many forms. SBD is a type of degradation that involves the formation of traps in the gate oxide layer of the transistor. These traps, which are defects in the structure of the SiO$_2$ gate oxide, form conduction paths and develop leakage current from the polysilicon gate to the silicon substrate. The leakage current affects the power consumption of the circuit even during its off state. There is debate about the cause of trap formation, which includes fabrication issues, hole creation, proton release, irradiation, and thermal damage.

APPROACH

- Model Soft Oxide Breakdown using resistance values at NMOS Gate to Source and Gate to Drain.
- Take a range of resistance values from 1MΩ down to 1kΩ and relate those values to time.
- Consider a reasonable lifetime of five years with cutoff resistance of 10kΩ.
- Use Synopsys Custom Designer for schematic design and HSPICE for running simulations.

EXPERIMENTAL RESULTS

The results from the three ring oscillators show no perceivable difference in delay up to the 10kΩ average life limit proposed in this study. Differences occur when the SBD is close to a hard breakdown ~3–4kΩ, which causes the circuit to fail completely. The differences in delay and period are believed to be too small for multisampling measurements within the confines of this study. Multisampling may be possible with simulations that have multiple inverters that suffer from SBD because they increase the delay farther.

CONCLUSION

- Adding resistors to the IC produces reliable approximations to the effects of SBD.
- SBD causes the delay to decrease under Gate to Drain breakdown, but an increase with Gate to Source.
- Delayed Multisampling is not feasible with single inverter breakdown.
- This research confirms that power consumption increases due to the increase in leakage current from SBD.
- Experimental results support our data simulations.

Acknowledgements

This project is sponsored by NASA Office of Education through the Curriculum Improvement Partnership Award for the Integration of Research (CIPAIR)