Course SLOs aligned with Program SLOs

San Mateo CCCD
CAN Program - Engineering/CIS

Apply knowledge of math, science, and engineering or computer science to identify, formulate, and solve engineering/computer science problems.

CAN Dept - Engineering

CAN ENGR 100 - Introduction to Engineering

Course Outcomes:

* Calculations - Formulate and perform elementary engineering calculations to aid the selection of the best design for a simple device. (Created By CAN Dept - Engineering)
* Data - Perform experiments analyze and interpret data, and prepare a report summarizing the results of the experiments. (Created By CAN Dept - Engineering)

CAN ENGR 210 - Engineering Graphics

Course Outcomes:

* CAD - Demonstrate the use of CAD programs, including solid modeling (Created By CAN Dept - Engineering)
* Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)
* Drawings - Read engineering drawings. (Created By CAN Dept - Engineering)
* Projection Types - Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
* Symbols - Adhere to the standard conventions for terminology, symbols, and styles used in engineering graphics. (Created By CAN Dept - Engineering)

CAN ENGR 230 - Engineering Statics

Course Outcomes:

* centroids - Calculate centroids and moments of inertia for composite bodies. (Created By CAN Dept - Engineering)
* Friction - Solve problems that include friction. (Created By CAN Dept - Engineering)
* Internal - Solve for internal forces in members and construct shear and bending moment diagrams for beams. (Created By CAN Dept - Engineering)
* Reduce force - Reduce systems of forces to one force or one force and one couple. (Created By CAN Dept - Engineering)
* Rigid - Solve for unknown forces for rigid bodies in two-dimensional and three-dimensional equilibrium. (Created By CAN Dept - Engineering)
* stability - Analyze the stability of rigid bodies in equilibrium. (Created By CAN Dept - Engineering)
* trusses - Analyze trusses, frames, and machines for external reaction forces and forces between the members. (Created By CAN Dept - Engineering)

CAN ENGR 240 - Engineering Dynamics

Course Outcomes:

* Analysis - Select the method of analysis that is best suited for the solution of a given problem. (Newton's Law, Work and Energy, Impulse and Momentum, or a combination of these methods.) (Created By CAN Dept - Engineering)
* Coriolis - Describe and analyze the plane motion of a particle relative to a rotating frame. Determine the Coriolis acceleration in plane motion. (Created By CAN Dept - Engineering)
* Impact - Apply the principle of impulse and momentum to problems of direct and oblique central impact, as well as eccentric impact. (Created By CAN Dept - Engineering)
* Newton - Correctly apply Newton's second law to analyze the motion of a particle in rectilinear or curvilinear translation acted upon by forces, or a rigid body in plane motion acted upon by forces and moments. (Created By CAN Dept - Engineering)
* particle kinematics - Derive and apply the relationships between position, velocity, and acceleration of a particle in rectilinear and curvilinear motion. (Created By CAN Dept - Engineering)
* plane motion - Derive relations defining the velocity and acceleration of any particle on a rigid body for translation, rotation and general plane motion. (Created By CAN Dept - Engineering)
* work-energy - Apply the method of work and energy to problems involving a single particle, a system of particles, or a rigid body in plane motion. (Created By CAN Dept - Engineering)

CAN ENGR 260 - Circuits And Devices

Course Outcomes:

* op amp - Apply a simple model for transistor and operational amplifiers to design and analyze simple circuits. (Created By CAN Dept - Engineering)
* responses - Analyze electric circuits for DC, transient, and AC voltage and current responses. (Created By CAN Dept - Engineering)
* simulation - Use a circuit simulation program (MultiSIM, PSPICE) to analyze circuit behavior. (Created By CAN Dept - Engineering)
Solution - Synthesize a method of solution to the determine current or voltage in any circuit using a combination Kirchhoff's Laws, loop and node analysis, the solution of differential equations, generalized impedance and admittance techniques, and phasor methods. (Created By CAN Dept - Engineering)

Steady state - Solve steady state AC circuit and network problems involving power transfer and resonance. (Created By CAN Dept - Engineering)

Techniques - Evaluate different circuits analysis techniques and choose an appropriate technique for a particular circuit. (Created By CAN Dept - Engineering)

Course Outcomes:
- Build - Build, from schematic diagrams, circuits using resistive, capacitive and inductive elements as well as switches, potentiometers, transistors, operational amplifiers, lamps, decade boxes and power supplies (Created By CAN Dept - Engineering)
- Calculate - Calculate dc and ac voltage, current, and power, and experimentally verify the results for a variety of electrical circuits (Created By CAN Dept - Engineering)
- Design - Design and construct circuits to experimentally verify circuit theorem's including Ohm's Law, Kirchhoff Rules, superposition, Thevenin, and Norton theorems. (Created By CAN Dept - Engineering)
- Operate - Operate, safely and properly, multimeters, power supplies, signal generators and oscilloscopes. (Created By CAN Dept - Engineering)
- Reports - Write lab reports that evaluate, analyze and summarize results and measurements of circuit behavior, including a discussion of any discrepancies between theoretical and measured results. (Created By CAN Dept - Engineering)
- Simulation - Use a circuit simulation program (PSPICE, MultiSIM) and other computer applications (MATLAB, MS Excel) to predict circuit behavior. (Created By CAN Dept - Engineering)
- Verify - Experimentally verify the transient behavior of first- and second-order RLC circuits. (Created By CAN Dept - Engineering)

Course Outcomes:
- Crystals - Identify the crystalline structure of models, and explain how the structure's characteristics affect a material's properties. (Created By CAN Dept - Engineering)
- Imperfections - Distinguish between the types of imperfections that can occur in crystalline structures and compare their effects on a material's properties. (Created By CAN Dept - Engineering)
- Mechanical properties - Perform tension, compression, and hardness tests, and interpret the results. (Created By CAN Dept - Engineering)
- Polymers - Relate typical properties of polymers and ceramics to their structures. (Created By CAN Dept - Engineering)
- S-S diffusion - Calculate rates of steady-state diffusion. (Created By CAN Dept - Engineering)
- Semi-conductors - Describe the mechanisms for electrical conduction in semiconductors. (Created By CAN Dept - Engineering)
- Strengthening mechanisms - Describe different strengthening mechanisms and thermal processing, and compare their effects. (Created By CAN Dept - Engineering)

Course Outcomes:
- AutoCad - Demonstrate the use of AutoCAD to create engineering drawings. (Created By CAN Dept - Engineering)
- Draw - Make freehand drawings (Created By CAN Dept - Engineering)
- Instruments - Demonstrate the use of drawing instruments. (Created By CAN Dept - Engineering)
- Projections - Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
- Read - Read engineering drawings (Created By CAN Dept - Engineering)

Course Outcomes:
- AutoCad - Demonstrate the use of AutoCAD and SolidWorks to create solid models. Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
- Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)
- Drawings - Prepare complete sets of working drawings and assemblies. (Created By CAN Dept - Engineering)
- Geometry - Apply descriptive geometry principles to solve engineering problems involving points, lines, surfaces and volumes. (Created By CAN Dept - Engineering)
- Tolerances - Specify dimensions and tolerances in engineering graphics, including Geometric Dimensions and Tolerances. (Created By CAN Dept - Engineering)

Course Outcomes:
- Engineering Application - Apply engineering knowledge and skills, and use engineering tools to perform an independent research project on a selected engineering topic. (Created By CAN Dept - Engineering)
- Literature search - Perform a literature search needed to support an independent study of an engineering topic. (Created By CAN Dept - Engineering)
*Proposal - Write a proposal to perform an independent study of an engineering topic or problem. (Created By CAN Dept - Engineering)

*Propose Solution - Formulate, refine, analyze and propose a solution to an engineering problem. (Created By CAN Dept - Engineering)

*Written Report - Write a report that evaluates, analyzes and summarizes the results of the independent study following generally accepted guidelines in technical reports. (Created By CAN Dept - Engineering)

Use techniques, skills, and modern engineering and computer tools necessary for engineering or computer science practice

CAN Dept - Engineering

CAN ENGR 100 - Introduction to Engineering

Course Outcomes:

Calculations - Formulate and perform elementary engineering calculations to aid the selection of the best design for a simple device. (Created By CAN Dept - Engineering)

Data - Perform experiments analyze and interpret data, and prepare a report summarizing the results of the experiments. (Created By CAN Dept - Engineering)

Disciplines - Recommend the types of projects and responsibilities that are the most appropriate for various engineering disciplines. (Created By CAN Dept - Engineering)

Drawings - Read and write elementary engineering drawings, instructions, and reports. (Created By CAN Dept - Engineering)

License - Illustrate the processes required to become an engineer and maintain a license. (Created By CAN Dept - Engineering)

Role - Evaluate the role of engineers in various societies around the world and throughout history. (Created By CAN Dept - Engineering)

CAN ENGR 210 - Engineering Graphics

Course Outcomes:

CAD - Demonstrate the use of CAD programs, including solid modeling (Created By CAN Dept - Engineering)

Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)

Drawings - Read engineering drawings. (Created By CAN Dept - Engineering)

Freehand - Make freehand drawings, and demonstrate the use of drawing instruments. (Created By CAN Dept - Engineering)

Symbols - Adhere to the standard conventions for terminology, symbols, and styles used in engineering graphics. (Created By CAN Dept - Engineering)

Tolerances - Specify dimensions and tolerances in engineering graphics. (Created By CAN Dept - Engineering)

CAN ENGR 230 - Engineering Statics

Course Outcomes:

centroids - Calculate centroids and moments of inertia for composite bodies. (Created By CAN Dept - Engineering)

Friction - Solve problems that include friction. (Created By CAN Dept - Engineering)

Internal - Solve for internal forces in members and construct shear and bending moment diagrams for beams. (Created By CAN Dept - Engineering)

Reduce force - Reduce systems of forces to one force or one force and one couple. (Created By CAN Dept - Engineering)

Rigid - Solve for unknown forces for rigid bodies in two-dimensional and three-dimensional equilibrium. (Created By CAN Dept - Engineering)

stability - Analyze the stability of rigid bodies in equilibrium. (Created By CAN Dept - Engineering)

trusses - Analyze trusses, frames, and machines for external reaction forces and forces between the members. (Created By CAN Dept - Engineering)

CAN ENGR 240 - Engineering Dynamics

Course Outcomes:

Analysis - Select the method of analysis that is best suited for the solution of a given problem. (Newton's Law, Work and Energy, Impulse and Momentum, or a combination of these methods.) (Created By CAN Dept - Engineering)

Coriolis - Describe and analyze the plane motion of a particle relative to a rotating frame. Determine the Coriolis acceleration in plane motion. (Created By CAN Dept - Engineering)

Impact - Apply the principle of impulse and momentum to problems of direct and oblique central impact, as well as eccentric impact. (Created By CAN Dept - Engineering)

Newton - Correctly apply Newton's second law to analyze the motion of a particle in rectilinear or curvilinear translation acted upon by forces, or a rigid body in plane motion acted upon by forces and moments. (Created By CAN Dept - Engineering)

particle kinematics - Derive and apply the relationships between position, velocity, and acceleration of a particle in rectilinear and curvilinear motion. (Created By CAN Dept - Engineering)

plane motion - Derive relations defining the velocity and acceleration of any particle on a rigid body for translation, rotation and general plane motion. (Created By CAN Dept - Engineering)
work-energy - Apply the method of work and energy to problems involving a single particle, a system of particles, or a rigid body in plane motion. (Created By CAN Dept - Engineering)

Course Outcomes:
- op amp - Apply a simple model for transistor and operational amplifiers to design and analyze simple circuits. (Created By CAN Dept - Engineering)
- responses - Analyze electric circuits for DC, transient, and AC voltage and current responses. (Created By CAN Dept - Engineering)
- simulation - Use a circuit simulation program (MultiSIM, PSPICE) to analyze circuit behavior. (Created By CAN Dept - Engineering)
- Solution - Synthesize a method of solution to the determine current or voltage in any circuit using a combination Kirchhoff?s Laws, loop and node analysis, the solution of differential equations, generalized impedance and admittance techniques, and phasor methods. (Created By CAN Dept - Engineering)
- Steady state - Solve steady state AC circuit and network problems involving power transfer and resonance. (Created By CAN Dept - Engineering)

CAN ENGR 261 - Circuits & Devices Lab.

Course Outcomes:
- Build - Build, from schematic diagrams, circuits using resistive, capacitive and inductive elements as well as switches, potentiometers, transistors, operational amplifiers, lamps, decade boxes and power supplies. (Created By CAN Dept - Engineering)
- Calculate - Calculate dc and ac voltage, current, and power, and experimentally verify the results for a variety of electrical circuits. (Created By CAN Dept - Engineering)
- Design - Design and construct circuits to experimentally verify circuit theorem?s including Ohm?s Law, Kirchhoff Rules, superposition, Thevenin, and Norton theorems. (Created By CAN Dept - Engineering)
- Operate - Operate, safely and properly, multimeters, power supplies, signal generators and oscilloscopes. (Created By CAN Dept - Engineering)
- Reports - Write lab reports that evaluate, analyze and summarize results and measurements of circuit behavior, including a discussion of any discrepancies between theoretical and measured results. (Created By CAN Dept - Engineering)
- Simulation - Use a circuit simulation program (PSPICE, MultiSIM) and other computer applications (MATLAB, MS Excel) to predict circuit behavior. (Created By CAN Dept - Engineering)
- Verify - Experimentally verify the transient behavior of first- and second-order RLC circuits. (Created By CAN Dept - Engineering)

CAN ENGR 270 - Materials Science

Course Outcomes:
- crystals - Identify the crystalline structure of models, and explain how the structure?s characteristics affect a material?s properties. (Created By CAN Dept - Engineering)
- Imperfections - Distinguish between the types of imperfections that can occur in crystalline structures and compare their effects on a material?s properties. (Created By CAN Dept - Engineering)
- mechanical properties - Perform tension, compression, and hardness tests, and interpret the results. (Created By CAN Dept - Engineering)
- polymers - Relate typical properties of polymers and ceramics to their structures. (Created By CAN Dept - Engineering)
- s-s diffusion - Calculate rates of steady-state diffusion. (Created By CAN Dept - Engineering)
- semi-conductors - Describe the mechanisms for electrical conduction in semiconductors. (Created By CAN Dept - Engineering)
- strengthening mechanisms - Describe different strengthening mechanisms and thermal processing, and compare their effects. (Created By CAN Dept - Engineering)

CAN ENGR 410 - Computer-Aided Graphics

Course Outcomes:
- AutoCad - Demonstrate the use of AutoCAD to create engineering drawings. (Created By CAN Dept - Engineering)
- Draw - Make freehand drawings. (Created By CAN Dept - Engineering)
- Instruments - Demonstrate the use of drawing instruments. (Created By CAN Dept - Engineering)
- Projections - Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
- Read - Read engineering drawings. (Created By CAN Dept - Engineering)

CAN ENGR 413 - Designing with CAD

Course Outcomes:
- AutoCad - Demonstrate the use of AutoCAD and SolidWorks to create solid models. Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
- Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)
- Drawings - Prepare complete sets of working drawings and assemblies. (Created By CAN Dept - Engineering)
- Tolerances - Specify dimensions and tolerances in engineering graphics, including Geometric Dimensions and Tolerances. (Created By CAN Dept - Engineering)
Design and perform tests or experiments, analyze and interpret data, and prepare a report summarizing the results of the tests or experiments.

CAN Dept - Engineering

CAN ENGR 100 - Introduction to Engineering

Course Outcomes:
* Calculations - Formulate and perform elementary engineering calculations to aid the selection of the best design for a simple device. (Created By CAN Dept - Engineering)
* Data - Perform experiments analyze and interpret data, and prepare a report summarizing the results of the experiments. (Created By CAN Dept - Engineering)

CAN ENGR 210 - Engineering Graphics

Course Outcomes:
* Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)

CAN ENGR 230 - Engineering Statics

Course Outcomes:
* centroids - Calculate centroids and moments of inertia for composite bodies. (Created By CAN Dept - Engineering)
* Internal - Solve for internal forces in members and construct shear and bending moment diagrams for beams. (Created By CAN Dept - Engineering)
* trusses - Analyze trusses, frames, and machines for external reaction forces and forces between the members. (Created By CAN Dept - Engineering)

CAN ENGR 240 - Engineering Dynamics

Course Outcomes:
* plane motion - Derive relations defining the velocity and acceleration of any particle on a rigid body for translation, rotation and general plane motion. (Created By CAN Dept - Engineering)

CAN ENGR 261 - Circuits & Devices Lab.

Course Outcomes:
* Build - Build, from schematic diagrams, circuits using resistive, capacitive and inductive elements as well as switches, potentiometers, transistors, operational amplifiers, lamps, decade boxes and power supplies. (Created By CAN Dept - Engineering)
* Design - Design and construct circuits to experimentally verify circuit theorem?s including Ohm?s Law, Kirchhoff Rules, superposition, Thevenin, and Norton theorems. (Created By CAN Dept - Engineering)
* Operate - Operate, safely and properly, multimeters, power supplies, signal generators and oscilloscopes. (Created By CAN Dept - Engineering)
* Simulation - Use a circuit simulation program (PSPICE, MultiSIM) and other computer applications (MATLAB, MS Excel) to predict circuit behavior. (Created By CAN Dept - Engineering)
* Verify - Experimentally verify the transient behavior of first- and second-order RLC circuits. (Created By CAN Dept - Engineering)

CAN ENGR 270 - Materials Science

Course Outcomes:
* mechanical properties - Perform tension, compression, and hardness tests, and interpret the results. (Created By CAN Dept - Engineering)

CAN ENGR 410 - Computer-Aided Graphics

Course Outcomes:
* AutoCad - Demonstrate the use of AutoCAD to create engineering drawings. (Created By CAN Dept - Engineering)
CAN ENGR 413 - Designing with CAD

Course Outcomes:
- AutoCad - Demonstrate the use of AutoCAD and SolidWorks to create solid models. Distinguish between various types of projections used in engineering drawings. (Created By CAN Dept - Engineering)
- Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)
- Geometry - Apply descriptive geometry principles to solve engineering problems involving points, lines, surfaces and volumes. (Created By CAN Dept - Engineering)

CAN ENGR 695 - Independent Study

Course Outcomes:
- Engineering Application - Apply engineering knowledge and skills, and use engineering tools to perform an independent research project on a selected engineering topic. (Created By CAN Dept - Engineering)
- Proposal - Write a proposal to perform an independent study of an engineering topic or problem. (Created By CAN Dept - Engineering)
- Propose Solution - Formulate, refine, analyze and propose a solution to an engineering problem. (Created By CAN Dept - Engineering)
- Written Report - Write a report that evaluates, analyzes and summarizes the results of the independent study following generally accepted guidelines in technical reports. (Created By CAN Dept - Engineering)

Develop a design or system given a set of requirements and specifications.

CAN Dept - Engineering

CAN ENGR 100 - Introduction to Engineering

Course Outcomes:
- Calculations - Formulate and perform elementary engineering calculations to aid the selection of the best design for a simple device. (Created By CAN Dept - Engineering)

CAN ENGR 210 - Engineering Graphics

Course Outcomes:
- CAD - Demonstrate the use of CAD programs, including solid modeling (Created By CAN Dept - Engineering)
- Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)

CAN ENGR 260 - Circuits And Devices

Course Outcomes:
- Solution - Synthesize a method of solution to the determine current or voltage in any circuit using a combination Kirchhoff's Laws, loop and node analysis, the solution of differential equations, generalized impedance and admittance techniques, and phasor methods. (Created By CAN Dept - Engineering)
- techniques - Evaluate different circuits analysis techniques and choose an appropriate technique for a particular circuit. (Created By CAN Dept - Engineering)

CAN ENGR 261 - Circuits & Devices Lab.

Course Outcomes:
- Build - Build, from schematic diagrams, circuits using resistive, capacitive and inductive elements as well as switches, potentiometers, transistors, operational amplifiers, lamps, decade boxes and power supplies (Created By CAN Dept - Engineering)
- Design - Design and construct circuits to experimentally verify circuit theorem's including Ohm's Law, Kirchhoff Rules, superposition, Thevenin, and Norton theorems. (Created By CAN Dept - Engineering)

CAN ENGR 413 - Designing with CAD

Course Outcomes:
- Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)

CAN ENGR 695 - Independent Study

Course Outcomes:
- Engineering Application - Apply engineering knowledge and skills, and use engineering tools to perform an independent research project on a selected engineering topic. (Created By CAN Dept - Engineering)
- Proposal - Write a proposal to perform an independent study of an engineering topic or problem. (Created By CAN Dept - Engineering)
- Propose Solution - Formulate, refine, analyze and propose a solution to an engineering problem. (Created By CAN Dept - Engineering)
- Written Report - Write a report that evaluates, analyzes and summarizes the results of the independent study following generally accepted guidelines in technical reports. (Created By CAN Dept - Engineering)

Communicate effectively and work well in situations that require teamwork.

CAN Dept - Engineering
CAN ENGR 100 - Introduction to Engineering

Course Outcomes:
* Calculations - Formulate and perform elementary engineering calculations to aid the selection of the best design for a simple device. (Created By CAN Dept - Engineering)
* Drawings - Read and write elementary engineering drawings, instructions, and reports. (Created By CAN Dept - Engineering)
* Ethics - Explain and analyze ethical issues in engineering (Created By CAN Dept - Engineering)

CAN ENGR 210 - Engineering Graphics

Course Outcomes:
* Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)
* Drawings - Read engineering drawings. (Created By CAN Dept - Engineering)
* Freehand - Make freehand drawings, and demonstrate the use of drawing instruments. (Created By CAN Dept - Engineering)
* Tolerances - Specify dimensions and tolerances in engineering graphics. (Created By CAN Dept - Engineering)

CAN ENGR 261 - Circuits & Devices Lab.

Course Outcomes:
* Build - Build, from schematic diagrams, circuits using resistive, capacitive and inductive elements as well as switches, potentiometers, transistors, operational amplifiers, lamps, decade boxes and power supplies (Created By CAN Dept - Engineering)
* Design - Design and construct circuits to experimentally verify circuit theorems including Ohm's Law, Kirchhoff Rules, superposition, Thevenin, and Norton theorems. (Created By CAN Dept - Engineering)
* Reports - Write lab reports that evaluate, analyze and summarize results and measurements of circuit behavior, including a discussion of any discrepancies between theoretical and measured results. (Created By CAN Dept - Engineering)

CAN ENGR 413 - Designing with CAD

Course Outcomes:
* Design - Apply the engineering design process to develop original solutions to engineering problems. (Created By CAN Dept - Engineering)

CAN ENGR 695 - Independent Study

Course Outcomes:
* Oral Presentation - Prepare and deliver an oral presentation of the results of the independent study. (Created By CAN Dept - Engineering)
* Written Report - Write a report that evaluates, analyzes and summarizes the results of the independent study following generally accepted guidelines in technical reports. (Created By CAN Dept - Engineering)

Formulate a plan of study to obtain a Bachelor's degree in engineering or computer science.

CAN Dept - Engineering

CAN ENGR 100 - Introduction to Engineering

Course Outcomes:
* Disciplines - Recommend the types of projects and responsibilities that are the most appropriate for various engineering disciplines. (Created By CAN Dept - Engineering)
* Ethics - Explain and analyze ethical issues in engineering (Created By CAN Dept - Engineering)
* License - Illustrate the processes required to become an engineer and maintain a license. (Created By CAN Dept - Engineering)
* Role - Evaluate the role of engineers in various societies around the world and throughout history. (Created By CAN Dept - Engineering)